5-(1/x)-(8/x^2)=0

Simple and best practice solution for 5-(1/x)-(8/x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-(1/x)-(8/x^2)=0 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

5-(1/x)-(8/(x^2)) = 0

5-x^-1-8*x^-2 = 0

t_1 = x^-1

5-8*t_1^2-1*t_1^1 = 0

5-8*t_1^2-t_1 = 0

DELTA = (-1)^2-(-8*4*5)

DELTA = 161

DELTA > 0

t_1 = (161^(1/2)+1)/(-8*2) or t_1 = (1-161^(1/2))/(-8*2)

t_1 = (161^(1/2)+1)/(-16) or t_1 = (1-161^(1/2))/(-16)

t_1 = (161^(1/2)+1)/(-16)

x^-1-((161^(1/2)+1)/(-16)) = 0

1*x^-1 = (161^(1/2)+1)/(-16) // : 1

x^-1 = (161^(1/2)+1)/(-16)

-1 < 0

1/(x^1) = (161^(1/2)+1)/(-16) // * x^1

1 = ((161^(1/2)+1)/(-16))*x^1 // : (161^(1/2)+1)/(-16)

-16*(161^(1/2)+1)^-1 = x^1

x = -16*(161^(1/2)+1)^-1

t_1 = (1-161^(1/2))/(-16)

x^-1-((1-161^(1/2))/(-16)) = 0

1*x^-1 = (1-161^(1/2))/(-16) // : 1

x^-1 = (1-161^(1/2))/(-16)

-1 < 0

1/(x^1) = (1-161^(1/2))/(-16) // * x^1

1 = ((1-161^(1/2))/(-16))*x^1 // : (1-161^(1/2))/(-16)

-16*(1-161^(1/2))^-1 = x^1

x = -16*(1-161^(1/2))^-1

x in { -16*(161^(1/2)+1)^-1, -16*(1-161^(1/2))^-1 }

See similar equations:

| 7-n+6=7 | | 12(v+3)-4v=2(4v+1)-8 | | -4x=2x | | 2x+16=3x+15 | | 2(2x+3)=-2 | | 17.9t=17.9t+6.66 | | -12x-7=9 | | 4x+15x=22-15 | | 11x-4.9x^2+22=0 | | 2w+3=5(w+3) | | -12+19y=-7+19y | | 3x=10y+23 | | 10(11-t)+4=-4(t-4)-10 | | 0.6(x+300)=0.66x-276 | | (4.5x+3.75y)=84 | | 8h+17=17+12h-4h | | 45-1x=30 | | -2/15=2/3x-2/5 | | 1/10n-4/5=1 | | 5x+2=2+-10 | | 20(4.5x+3.75y)=84 | | -1.2(-2.45)= | | -4n+8.96+2.3n=8.94-1.7n | | 18x-15=10x-10 | | 15=-6-3x/8 | | 5-1/x-8/x^2=0 | | -5x-6=15 | | -3x-2+5x^2=0 | | 16x^2+40x+50=0 | | -6.21+7.8k=8.6k+4.57 | | t-6a=2 | | -18=3(-z+6)2z |

Equations solver categories